Relation Preserving Triplet Mining
for Stabilising the Triplet Loss in Re-identification Systems WACV
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Goal Motivation
eWe present Relation Preserving Triplet Mining - Large intra-class variation
(RPTM), a feature-matching guided scheme ensuring that - Leads to bad triplet definitions

triplets respect natural subgroupings within an object ID.

e\We use this triplet mining mechanism to establish a
pose-aware, well-conditioned triplet loss by implicitly
enforcing view consistency.

e |t allows us to keep the training pipeline simple, as a
standard SGD to optimise a cost function, and Is also
well-conditioned enough to permit the use of constant *+ Better riplet mining scheme
training parameters across datasets. + Improved generalisation for relD

- Causes non-optimal and longer training scenarios

Triplet Mining falls at pose awareness

+ Exploit internal groupings for selecting implicitly pose-
aware anchor-positive maps

Relational Triplets

* Relational triplets change the triplet definition from one based on human assigned IDs to naturally occurring groups.
* The set of subsets is denoted by N = {S, }and S = U Sm . Whether two instances share a natural subset, we use the
SmeN

. Anchor-positive pairs share a common subset, negative does not.

relational indicator G(xz-zxj)={1* if x;,X; share a subset in NV,

0, otherwise.

 Class-adaptive Thresholding System: positive images
et — c— are chosen using a threshold 1 which is the mean number
of non-zero matching results.
anchorimage *  RPTM: semi-hard positive mining, anchor-positive pairs
satisfy the relational indicator AND positive differs
significantly from the anchor.
 Implicitly Enforced View Consistency: RPTM cleans
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8 — up the triplet mining process with a triplet filtration step
S L B and prevents erroneous local minimas.
7] 1mage pars withnaturat iy =  Models with larger parameters can optimise just as fast
o e e laton as smaller networks.
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Results: Qualitative Quantitative UMAP Visualisation
Dataset mAP r=1 r=>5
Veri-776 88.00 97.30 98.40
VehicleID(800) 84.80 95.50 97.40
VehicleID(1600) 81.20 93.3() 96.50
VehicleID(2400) 80.50 92.90 96.30
DukeMTMC 89.20 93.50 96.10

Table 1: Quantitative results of RPTM on the Veri-776, Ve-
hicleID and DukeMTMC datasets. We compare (bold be-
ing SoTA) with works using a ResNet101 backbone and re-

N | o | Nt Lo
_ ranking(Veri and Duke).
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