

Relation Preserving Triplet Mining for Stabilising the Triplet Loss in Re-identification Systems

Adhiraj Ghosh^{1,2}, Kuruparan Shanmugalingam^{1,3}, Wen-Yan Lin¹

Singapore Management University, ²University of Tübingen, ³University of New South Wales

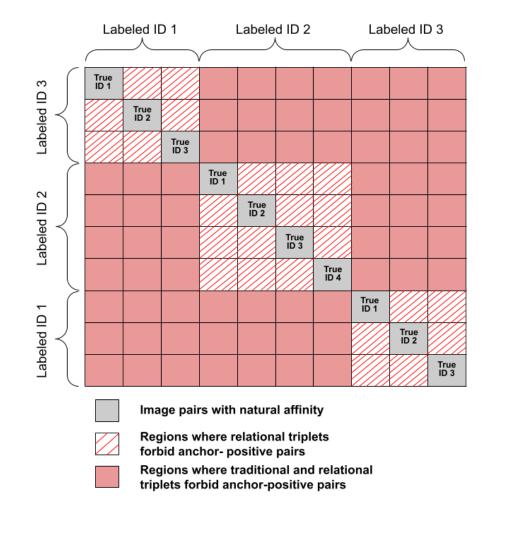
Goal

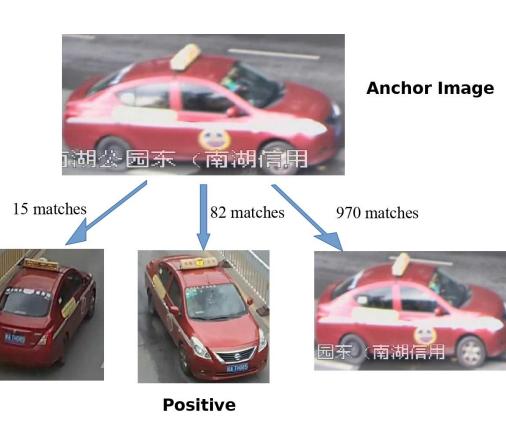
- present Relation Preserving Triplet Mining •We (**RPTM**), a feature-matching guided scheme ensuring that triplets respect natural subgroupings within an object ID.
- •We use this triplet mining mechanism to establish a pose-aware, well-conditioned triplet loss by implicitly enforcing view consistency.
- It allows us to keep the training pipeline simple, as a standard SGD to optimise a cost function, and is also well-conditioned enough to permit the use of constant training parameters across datasets.

Relational Triplets

Motivation

- Large intra-class variation
- Leads to bad triplet definitions -
- Causes non-optimal and longer training scenarios
- Triplet Mining fails at pose awareness
- Exploit internal groupings for selecting implicitly poseaware anchor-positive maps
- Better triplet mining scheme ╋
- Improved generalisation for reID +
- Relational triplets change the triplet definition from one based on human assigned IDs to naturally occurring groups. \mathcal{S}_m . Whether two instances share a natural subset, we use the The set of subsets is denoted by N = {S_m} and $S = \bigcup$ • ${\mathcal S}_m{\in}{\mathcal N}$

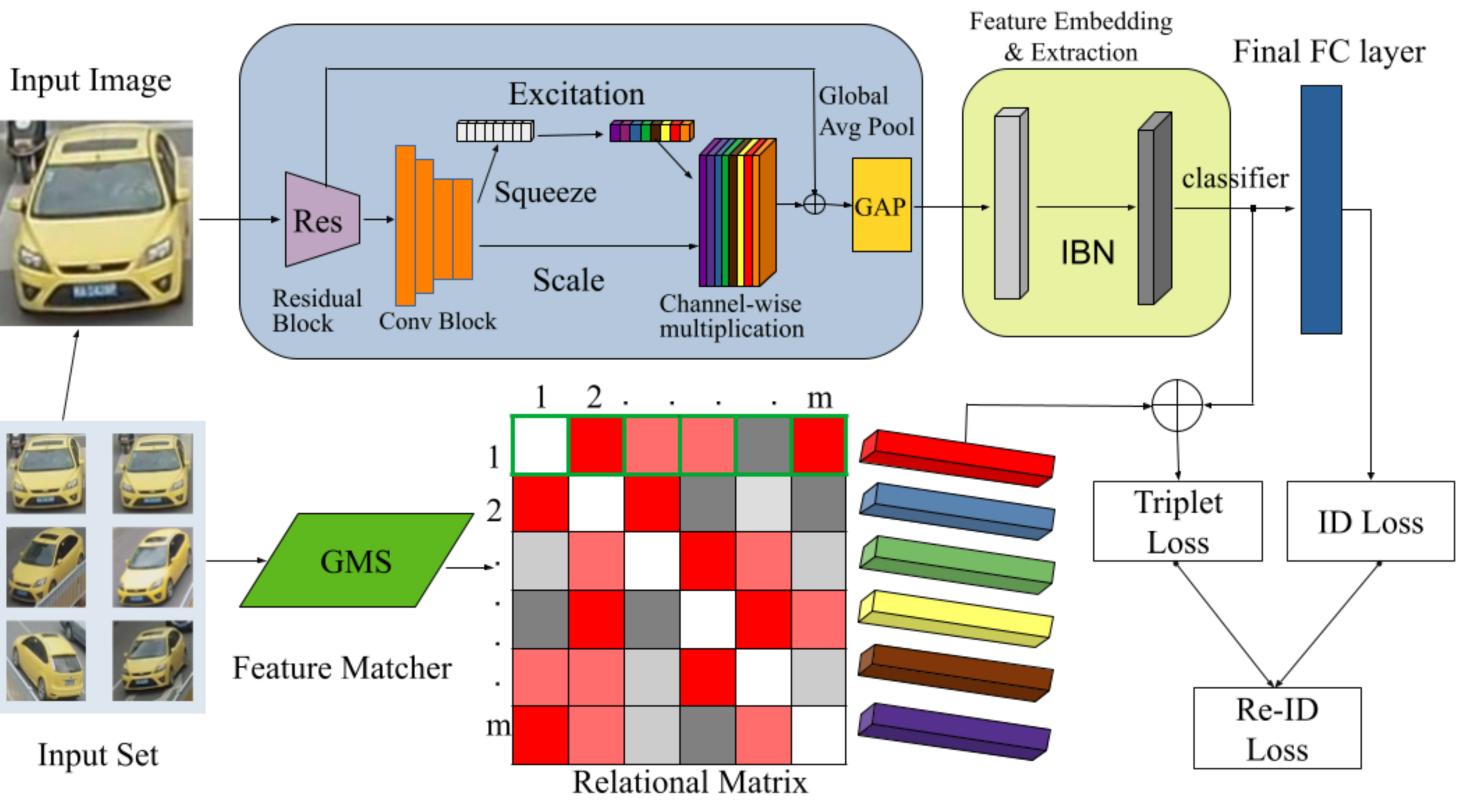




relational indicator $C(\mathbf{x}_i, \mathbf{x}_j) = \begin{cases} 1, & \text{if } \mathbf{x}_i, \mathbf{x}_j \text{ share a subset in } \mathcal{N}, \\ 0, & \text{otherwise.} \end{cases}$. Anchor-positive pairs share a common subset, negative does not.

- Class-adaptive Thresholding System: positive images are chosen using a threshold τ which is the mean number of non-zero matching results.
- **RPTM:** semi-hard positive mining, anchor-positive pairs satisfy the relational indicator AND positive differs significantly from the anchor.
 - **Implicitly Enforced View Consistency:** RPTM cleans up the triplet mining process with a triplet filtration step and prevents erroneous local minimas.
 - Models with larger parameters can optimise just as fast as smaller networks.

Architecture



- 1. Relational Matrix: class-based image pair correspondences
 - **1.a. GMS[1]:** Grid-based Motion Statistics for a quick and effective feature matching strategy
- **2. ResNet:** generate discriminative feature embeddings

3. Squeeze-Excitation: improve channel interdependencies at no extra computational cost

4. IBN: diverse features impact performance in proportion

5. Re-ID Loss: weighted sum of triplet loss and cross-entropy loss

Results: Qualitative



318

318

318

318

318 318

Quantitative

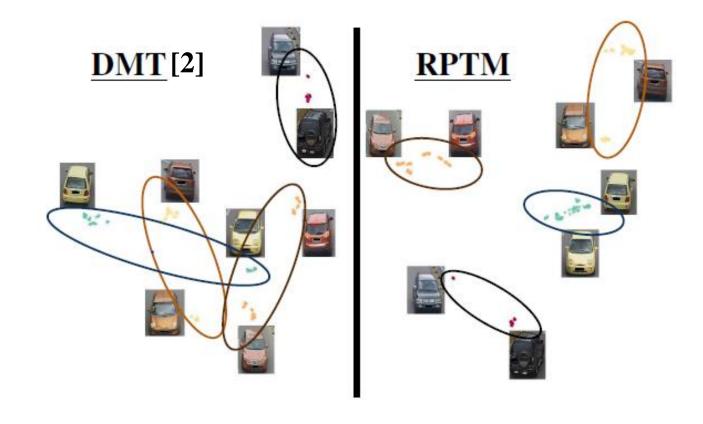
Dataset	mAP	r = 1	r = 5
Veri-776	88.00	97.30	98.40
VehicleID(800)	84.80	95.50	97.40
VehicleID(1600)	81.20	93.30	96.50
VehicleID(2400)	80.50	92.90	96.30
DukeMTMC	89.20	93.50	96.10

Table 1: Quantitative results of RPTM on the Veri-776, VehicleID and DukeMTMC datasets. We compare (bold being SoTA) with works using a ResNet101 backbone and reranking(Veri and Duke).

References

[1] Jia Wang Bian, et al. "Gms: Grid-based motion statistics for fast, ultra-robust feature correspondence.", CVPR 2017.

UMAP Visualisation



Code & Contact

Code is available open-source

318

318

318

368

318

318

318

318

318

318

318

318

ID: 318

ID

[2] Shuting He, et al. "Multi-domain learning

and identity mining for vehicle re-

identification.", CVPRW 2020.

adhiraj.ghosh@student.uni-tuebingen.de